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ON THE STABILIZATION OF CERTAIN NON-LINEAR SYSTEMS* 

V.B. KOLMANOVSKII 

The problem of the stabilization of systemswithanon-linearity,dependent 
on a small parameter e, is studied. A quasi-optimal stabilization algorithm 
is proposed and substantiated for the case of small e.If nothing is known 
regarding the magnitude of E , the technique of adaptive stabilization is 
developed. Examples of synthesis in the control of the motion of robots 
with unknown parameters are considered. 

The problem of the stabilization of motions , with which a large number of investigations 
have been concerned, is studied in two formulations /l/. The first is associated with the 
determination of the control under which the system becomes stable while the second is 
associated with the choice of the control which minimizes a functional (the quality criterion). 
Generally speaking, the above-mentioned formulations are not equivalent. In order that the 
control which minimizes the integral quality criterion should simultaneously make the system 
stable, it follows that one should consider quality criteria which are positive-definite with 
respect to the phase coordinates (quadratic criteria, for example). Moreover, if the per- 
turbations in the system are small, then a non-linear system may be approximated by a linear 
system. In fact, in the case of problems involving the stabilization of linear systems, the 
final results have been obtained with a quadratic quality criterion. 

The question of whether it is possible to expand the Bellman function and the optimal 
control in power series in small perturbations and the convergence of these series has been 
investigated in /3, 4/ for non-linear problems and small perturbations. At the same time, 
the initial perturbations may not.be small when real systems are treated and it is therefore 
necessary to take account of non-linearity when constructing the control. 

A method of quasi-optimal stabilization is presented below and error estimates are 
obtained for the case of arbitrary initial perturbations. 

1. Formulation of the quasi-optimal stabilization problem. A control system 
has the form 

z* (t) = Ef (t, x (t)) + B (t)u, t > 0, 5 (0) = %I 

*Prikl.Matem.Mekhan.,51,3,395-402,1987 

(1.1) 
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Here, the vector dcAH, (where /I,, is an n-dimensional Euclidean space), the function 
f (t, J.)r which is measurable with respect to its set of arguments, satisfies a local Lipshitz 
condition with respect to 5, if(t,~-.)I ( CZ, the matrix B (t)is measurable and bounded in the 
interval LO, m) and the parameter, s:0 and the vector x0 are specified. Here and sub- 
sequently, various positive constants are denoted by the letter C. The control u r u (t, % (I)) 
has to be chosen in such a way that the functional 

J(u)- [ (z'Q)Nr (t)x (t) + U'N, @) u) clt (1.2) 
0 

is minimized. Here, the prime denotes transposition and the matrices N, are continuous, 
bounded and uniformly positive-definite for all t> 0. We note that if the controls of a 
motion contain linear terms, A (t)z(t), they are reduced to the form of (1.1) by means of a 
non-singular coordinate transformation, Furthermore, under the assumptions which have been 
made, if the functional J(U)< 00 for a certain control U, thesolution of system (l.l), 
corresponding to this control, tends to zero as t-t 00. 

Let us assume that a solution of problem (l.l), (1.2) exists for the values of t: being 
considered and denote the optimal control by u(t,rc) and the corresponding Bellman function 
by v (t, r). Sometimes, in order to emphasize the dependence of the solutions of Eqs.(l.l) 
on the control v, we shall denote it by f (t. L.). 

The following lemma is used in the proof of the proposed synthesis algorithm. 

Lemma 1. /5/. Let us consider the problem of the control of system (1.1) with the 
minimizing functional 

K (t, x(t)). u (t, r (t)) dt (13) 

where K is a continuous scalar function. Let there exist a 
tinuously differentiable once with respect tot and .r and an 
0 such that 

function v (t, 4 which is con- 
admissible control v(t, z), u (t, 0) z 

v (t, x) < c 1 x 12, I aviax 1 -_( c (1 -I- I x I”) 
K (t, x, u) > C 1 z 1% 

ruin,, [$ + (of + Bu)'$- + K(t,r, u)] = 

2 + (of $ Bu)'z f- K (t,x,v)= 0 

(1.4) 
(1.5) 

(1.6) 

Then, the control u(t,x) solves the problem of minimizing the functional (1.3) on the 
trajectories of system (1.1) and, moreover, the corresponding Bellman function is equal to 
V (t, X) and, subject to the control u(t,.r), the trivial solution of system (1.1) is asymptoti- 
cally stable as a whole, that is, its domain of attraction is identical with the whole of the 
space R,,. The latter fact signifies that, for any solution x(t, U) which is determined by 
arbitrary initial condtions, lim r(t, u) = 0 as t-+ 00. 

2. Successive approximations. We shall first present a heuristic description of 
the quasi-optimal stabilization algorithm. Let us write down the Bellman equation (1.6) for 
problem (l.l), (1.2) 

The optimal control u 

We now represent V in 

In order to determine 

is equated to 

Y (t, z) = --‘I,N,-‘B’BV (t, x)/&z 

the form of a power series in s 

v (t, x) = V, (t, x) + &VI (t, 5) + . . 

the functions Tii,we substitute (2.3) 
coefficients accompanying like powers of F to zero. We obtain 
when E = 0 and, for Vi, i >I, we have a sequence of equations 

(2.2) 

(2.3) 

into (2.1) and equate the 
that V, satisfies Eq. (2.1) 
which are linear in Vi 



The solution of Eq.(2.4) will be sought in the class of continuously differentiable 
functions which satisfy the estimates (1,4). The equatian for the i-th approximation ui 
the optimal control v is 
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to 

(2.5) 

Hence, a Substantial part of the algorithm is associated with the need to solve problem 
(2.41, t2.51. We recall that, if problem (2.4), (2.5) is solvable when E = 0, then V, = 
Z'P (Qx, where the matrix P (t)is the unique, bounded, positive-definite solution of the 
Riccati equation ,!I, 25 

p' (t) - P fk)B, P ft) f N1 @f = 0, t > 0 (2.6) 

The remaining approximations, subject to corresponding assumptions regarding the Smoothness 
of f(t,z), are given by the formula 

Here, when i = 1, the sum is equal to zero and X(S) is the solution of Eq.(l.l) when 
E = 0, s > t with the control utt = --N,-'(s) B' (.s> P fs) Z(S) and the initial condition t (t) = I. 

3. Estimate of the zeroth approximation. The zeroth approximation control 

KJ ttv 4 is defined by expxessions (2.5) and (2.6) when i =O. 
Let us assume that the initial control problem (l.l), (1.2) has a Solution foraspecified 

value of 8 and, also, for e = 0 and that the inequality 

x’N,x - 2l3f' (t, x) P (t) x 2 c J 2 1% 

is valid. (The different conditions of Stabilizability when E = 0 rire given in /lr 2/t, 
Then‘ for a certain value of the constant C which is determined by the parameters of 

problem (1.11, (1.2) 

0 < J (UJ - J (V) < CE (3.2) 

Let us prove this inequality which signifies that, when system (1.1) is controlled by 
means of uto, the error inthefunctional (1.2) has a magnitude of the order of F. In view of 
condition (3.11, theintegrand of the functional 

iS positive definite with respect to the phase coordinates, that is , a requirement of the form 
of 11.5) 

is satisfied. 
On the basis of Lemma 1, this means that the contxol u~(~,x) is a Solution of the problem 

of minimizing the functional (3.3) on the trajectories of system (1.1) and that the correspond- 
ing Bellman function is Vo(Lz), whence it also follows from (3.4) that 

!Y I x if, %f 12 a d eve (0, 4 (3.5) 
0 

It follows from this inequality and expression (2.6) for "a that J(u,,f<=, that is, the 
controlu, is also admissible for the initial problem (l.l), (1.2). Let us represent the 
difference from (3.2) in the form 

J (~1 --J (G= AX + A,, A, = J, (1~01 - J(V), A, = I&,) - JO(u,) (3.6) 

and estimate the differences A, and A,. By virtue of the optimality of the control ti and the 
admissiblity of the control + 

J(u) Q J&d = J,(%J f A, (3.Q 

Next, using (3.31, the boundedness of P and the assumptions regarding f, we have 

A@ c 2e f 1 f’ (b 2 (4 uo)) P (1) 2 (6 4) I dl g ZEC~, z 0. w) I* a < 66 (3.8) 
0 0 



310 

Hence, by virtue of (3.7) 

J (p) < J, (KJ T G (3.'J) 

Similarly, in view of the optimality of the control u0 in problem (l.l), (3.3) and by 
virtue of the uniform positive-definiteness of the matrix lV1 and the estimate (3.9), we have 

J, @a) d J (u) + I Jo (4 - J (4 I Q J (4 i 8 G (3.10) 

Comparing relationships (3.9) and (3.10), we conclude that 1 A,I<EC. From this inequality 
and (3.8), we have (3.2) by virtue of (3.6). 

4. Estimates of the higher approximations. In considering the i-th approximation, 
Ui, to the optimal control, it is postulated that there exist continuously differentiable 
functions VjTj< i which satisfy Eq.(2.4) and, also, the estimates 

I w (6 x) I < C I x 12, I SV (t, s)/&z I < C I x I, i < i (4.1) 

It follows from definition (2.5) of the controls uj(t,m) and (4.1) that Uj(tt O)=O. 
The method employed above in proving the estimate for the zeroth approximation (3.2) 

consisted of the fact that the zeroth approximation control, u,,is to be interpreted as the 
optimal initial system (1.1) with a minimized functional which differs from the initial 
functional (1.2) a quantity of the order of magnitude of E. We also use this approach when 
investigating the controls ui (t,s), i > 1 which are defined by equality (2.6). In order to 
construct an auxiliary stabilization problem in which ui (t,x) will be the optimal control, 
we write down the equation for the function w (t,x) from (2.6). After multiplying Eq.(2.4) 
by E' and summing the resulting equation over i, we have 

$ + sf (t,m)$J- + x'N12 + 6iei+l= (4.2) 

+(~)‘BI(~) 

By analogy with (3.11, we shall assume in the case being considered that problem (1.1)) 
(1.2) has a solution for the specified e and, also, for e = 0 and that the inequality 

x'N,x - ,i+Y& > c I x la (4.3) 

holds. 
Under assumption (4.3), the functional 

Ji(u)=J(u) + s {+I[ si(t,x(t, u)) at 
0 

(4.4) 

is positive-definite with respect to the phase coordinates. Hence, by virtue of Lemma 1, and 
taking account of Eq.(4.2) and the esttiates (4.1) , a control Ui will be optimal in problem 
(1.11, (4.4) with a Bellman function equal to W. It follows from this and (4.3) that 

5 Ix (1, Uf)l*dt<cCW(0,xO) (4.5) 
0 

Additionally, 2Ui (t, X) = -N,-' (t) B' (t) 8w (t, x)/&z. Hence, on the basis of (4.1) and (2.6), 

we have I ui (& s) I < C II I . This means that, when account is taken of (4.5), J(Q)< 00, that 
is, ui is an admissible control in the stabilization problem (l.l), (1.2). The subsequent 
proof of the estimates of the i-th approximations is analogous to the proof of inequality (3.2). 
It can be shown that 

0 < J (ui) - J (u) < Ce'+' (4.6) 

It is clear that J (ui) -J (0) = [Ji (ui) -J (u)l + IJ (ui) - Ji (u,)l: Let us estimate the differences 
on the right hand side of the latter relationship. By virtue of (4.4) and (4.5), we have 

r(U)~J(Ui)~~*(u~)+IJ(Ui)-l((u*)(~~~("~)~~i+lC~~, Pi=~,Z(f,Ui)izdl (4.7) 
0 

In order to prove the inequality which is the opposite of (4.7), we use the optimality 
of the control Eli in stabilization problem (1.1) and (4.3). Then, 
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Jj (Uj) d Ii (v) 6 J (0) + 1 Ji (v) - J (u) 1 < .I (0) f E’f’C y 15 (t, v) 18 dl < J (v) + E’+‘clw (0, Q) (4.8) 
0 

It follows from the inequalities (4.7) and (4.8) that 

1 li (Ui) - J (U) 1 < eitlCyi 

Furthermore, it has been established when deriving the estimate (4.7) that 

I J (Ui) - Ji (Ui) I < e'+' C Ci 

Relationships (4.9) and (4.10) signify that 

0 Q J (Ui) - J (U) < E'+' C Ci 

(4.9) 

(4.10) 

An estimate of the i-th approximation of (4.6) is thereby established. 
We note that problems involving the control of systems with a small parameter ina finite 

interval of time are considered in /6/. 

Remark. We present the sufficient conditions for the estimates of (4.1) to be valid. 
Let us assume that problem (l.l), (1.2) is solvable when e= 0, that the function f(t,z) and 
its derivatives a'f (t, z)/ &zj are continuous and that la'f /a+jl<C, j = i,..., i; t>l. Then, a unique 
solution of Eq.(2.4) exists which satisfies the estimates (4.1) and (4.4). This solution is 
representable in the form of (2.7). 

5. Adaptive stabilization. Let us now assume that the actual value of the parameter 
E in (1.1) is unknown. The stabilization problem (which is now referred to as an adaptive 
stabilization problem) involves the choice of a control law such that, under this law, the 
trivial solution of system (1.1) is asymptotically stable on the whole. We shall seekadaptive 
control, which solves the problem of adaptive stabilization, in the form Bo(t, 5) -k (t) f (t, z). 
The function o(t,z) and the scalar coefficient k(t) of the auxiliary control contour are 
selected in such a way as to ensure the stabilitybf the trivial solution of the system 

5’ (t) = (E - h- @)) f (t, X (t)) t B (t) W (t, X (t)) 

Lemma 2. For a certain fixed value of Ed, leta control co,, (t,z), 
for which the trivial solution of the equation 

Y' (t) = &Of (t> Y (Q) + B% (t, Y (t)), t > 0 

is asymptotically stable uniformly with respect to the initial data. 
adaptive stabilization is solvable for any E. 

(5.1) 

00 (t, 0) = 0 be found 

Then, the problem of 

Proof. The existence of a Lyapunov function V(t.2) follows from the conditions of 
Lemma 2 andtheinversion theorem in the theory of stability /7/. The function V is strictly 
positive, has an infinitely small higher limit and the sum R (t, 2) = lit 0, 2) + V,'(t, .z) (eof (t, 2) + 
Se, (t, z)) is strictly negative. Let us define the control coefficient k(t) in (5.1) by the 
relationship 

k’ (t) = - I/$ f’ (t, z (t)) V, (t, z (t)), t > o 

v, = avlaz, k (0) = 0 

(5.2) 

and consider the function R,(t,s) = V (t,z) -I- (e - e,- k (t))'. For the complete derivative of this 
function along the trajectories of (5.1), (5.2), we have Ri= R. This means, by virtue of the 
theorem concerning stability along parts of variables /8/, that the trivial solution of system 
(5.1) is asymptotically stable as a whole. The control o0 and the regulator (5.2) thereby 
ensure the stability of system (5.1) for any a priori unknown value of the parameter e. 

Lemma 2 reduces the question concerning the adaptive stabilization of system (1.1) to the 
choice of the Lyapunov function V and the control oO. When this is so, use can be made of 
the construction in Sects.l-3. In particular, if system (1.1) can be stabilized when e = 0, 
it is possible to put V = V, and wg = I&J where V, = x’ P (t) x and u,, = -N,-‘B’Px. If the 
conditions in Sect.4 are satisfied when E= e,, one can put V = W, coo = ui, wherethe functions 
W and Ui are given by Eqs.(2.5) when E =.?,. In both cases, the coefficient k(t) is defined 
by Eq.(5.2). Meanwhile, when actual systems are considered, it is possible with the help of 
Lemma 2, using their specific characteristics , to construct a stabilizing control which does 
not depend on all of the phase coordinates. The latter fact is important from the point of 
view of the minimization of the number of position sensing devices. The solution oftheproblem 
on the adaptive stablization of a specified programmed motion of system (1.1) can be formulated 
in terms which are analogous to Lemma 2. We note that the problem of the optimal stabilization 
when there are constantly acting perturbations is discussed in /lo/. 

Examples. lo. Let us consider a single-link manipulator consisting of an absolutely 
solid, homogeneous, linear rod of length L and mass M. One end of this rod is connected to 
an ideal cylindrical articulation 0 with a fixed base while the load of mass m which is to be 



312 

moved is rigidly clamped to the other end of the rod. A control moment u is applied to the 
axis of the articulation 0. The motion takes place in a vertical plane in a gravitational 
force field. The axis of the articulation 0 is perpendicular totheplane of motion. The 
equations of motion have the form 

L2mlcpp” -/- acp’ -1 fiL (m + M/2) sin cp = u 

o (0) = ~'o, cp' (0) = (p,,'; m, = m + M/3 

Here,o is the angle between the axis of the rod and a vertical line lying in the plane 
of motion and perpendicular to the axis of the articulation, g is the gravitational constant, 
and a. is the coefficient of viscous friction. The value of a is generally only known 
imprecisely (/g/, p.215). Below, it is only assumed, regarding a, that a>~>0 and that 
the actual value of a is unknown. This problem involves the selection of that control moment 
U under the action of which the load m is moved from an arbitrary initial position 'PO, 'Fo 
to the origin of coordinates (o= O,o'= 0). Since the coefficient of friction a, is unknown, 
the time taken to reach the origin of coordinate is also unknown. Hence, the synthesis of 
that control u under the action of which 

lim cp' (t) = 0, lim 'p (t) = 0, t + m (5.3) 

is a possible formalization oftheproblem which has been posed. 
Let us specify the control u in the form U= - b,rp(t),b,> 0. We note that such control can 

be realized using standard proportional controls. Let us write the equations of motion under 
this control in the form 

'pl' = 'pZ, Q' = - alop, - a2 sin 'pl - brq, (5.4) 
a, = CCL-3 q-‘, a2 = gL-’ (m -1 M/2) nr,-', b = b,L-a ml-’ 

We shall take the following function 

V= 2b 'PI' + '~9 + ((~2 + a,~)' (5.5) 

as the Lyapunov function from Lemma 2 for system (5.4). 
For any 6>0, the derivative ofthe function V along the trajectories of system (5.4) 

satisfies the relationship 

V' < - Za,Q(b - ap - a&') - Zq),% (aI - aa,) 

Let us choose and fix 6 such that a,L-8m,-1-68a,>0 and, after this, select b from the 
condition b - a, - a,@ > 0. Then V’ will be negative-definite, whence (5.4) also follows from 
(5.5). 

2O. Let us consider the problem of the stabilization of an object which corresponds, for 
example, to robots of the "Cyclon" type. The hand of the robot of length L and mass M is set 
in motion by means of double acting pneumatic cylinders via a transmission mechanism with a 
shoulder 1. A load of unknown mass m is situated in the claw of the hand. Let us put 

x1' = 'P'. x1 = cp, zQ = P, aI = 2F1 (m,LP)-’ 

a3 = IP,FlII,-', b = 2RTVl-1, ml = m + Ml3 

Here,cp is the angular motion of the hand of the manipulator, P is the current pressure 
in the pneumatic cylinders , F is the area of the piston, R is the universal gas constant, T 
is the absolute temperature of the gas, VI is the volume of the pneumatic cylinder, PI is the 
average pressure in it, g is the mass flow rate into the cavities of the pneumatic cylinders, 
and f((p')= -cq' is the force due to viscous friction in the device used with an unknown co- 
efficient of friction or>O. 

The equations of motion /ll/thentake the form 
5,' = O,ZQ - cU1, z,' = I~, zII' = - sszI + bu (5.6) 

The problem involves the synthesis of a control u under the action of which 

lim (I+ (t) I + 13 (4 I + 13 (9 I) = 0, t - w (5.7) 

for any initial values of the variables Zi, which corresponds totheproblem of the transfer of 
an unknown load m from an arbitrary position to the origin of coordinates. Let us put 

bu = - blz, - b2x9 (5.8) 

and choose the constants bi>O such that condition (5.7) is satisfied. We now introduce the 
Lyapunov function 

V = (x8 + b,a,-’ q)’ + (51, + bza,-‘s, + wa)* + Q* + 2a,-‘q* (as + (5.9) 
cz b,a,-‘) + b,a,-’ (Zb, + aas) zB2 

into the treatment. The total derivative of the function V along the trajectories of system 
(5.6) under the action of control (5.8) is 

V' = - xIa {2aab20,-’ + 46,%x1-’ a + 4a,o,-‘a) - 2a,bls,= - Zb,z,= - ‘%ws (5.10) 
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But, for any 6>0, 

Let us choose and fix 6>0 such that 

za, - 36> 0 (5.11) 

After this, we take any b,>O and b, which satisfies the condition 

2b, > 3b,6-’ (5.12) 

It follows from (5.10)-(5.12) that V’ is a strictly negative function. Condition (5.7) 
follows from this fact and from (5.9). So, for the selected b, and b,, the control (5.8) 
solves the problem which has been posed. 

we note that, if it is required that system (5.6) be transferred from an arbitraryinitial 
position to a final position (O,z,, 0) with an arbitrary f-2 and a zero velocity x1 at the end, 
one may use the control bu = - blx, - b,s, $_ b,% with the previous values of b, and b,. 
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